A novel ant-based clustering algorithm using the kernel method

نویسندگان

  • Lei Zhang
  • Qixin Cao
چکیده

A novel ant-based clustering algorithm integrated with the kernel (ACK) method is proposed. There are two aspects to the integration. First, kernel principal component analysis (KPCA) is applied to modify the random projection of objects when the algorithm is run initially. This projection can create rough clusters and improve the algorithm’s efficiency. Second, ant-based clustering is performed in the feature space rather than in the input space. The distance between the objects in the feature space, which is calculated by the kernel function of the object vectors in the input space, is applied as a similarity measure. The algorithm uses an ant movement model in which each object is viewed as an ant. The ant determines its movement according to the fitness of its local neighbourhood. The proposed algorithm incorporates the merits of kernel-based clustering into ant-based clustering. Comparisons with other classic algorithms using several synthetic and real datasets demonstrate that ACK method exhibits high performance in terms of efficiency and clustering quality. 2010 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Assessment for a Fleet of Machines Using a Combined Method of Ant-Based Clustering and CMAC

This paper proposes a combined method of ant-based clustering and cerebellar model articulation controller for performance assessment for a fleet of machines. A novel ant-based clustering algorithm with kernel method is used to cluster machines in a fleet. The algorithm has two features. First, a projection based on kernel principal component analysis replaces random projection to improve the e...

متن کامل

Improving Vehicular Ad-Hoc Network Stability Using Meta-Heuristic Algorithms

Vehicular ad-hoc network (VANET) is an important component of intelligent transportation systems, in which vehicles are equipped with on-board computing and communication devices which enable vehicle-to-vehicle communication. Consequently, with regard to larger communication due to the greater number of vehicles, stability of connectivity would be a challenging problem. Clustering technique as ...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

Hybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran

Shear wave velocity (Vs) data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp) measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodolo...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 181  شماره 

صفحات  -

تاریخ انتشار 2011